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Abstract. The North Pamir, part of the western syntax of the India-Asia collision zone, preserves remnants of a 14 

poorly investigated Paleozoic intra-oceanic subduction zone. To constrain the age of this ancient ocean floor, we 15 

analyzed calcite phases in vesicular basalt and basaltic volcanic breccia with U-Pb geochronology using laser-16 

ablation inductively-coupled-plasma mass-spectrometry (LA-ICP-MS). Calcite dating yielded Mississippian 17 

ages, mostly overlapping each other within errors. REE + Y data reveal that the basaltic host rock of the calcite 18 

and oxidizing seawater are major sources of trace elements during calcite precipitation. U-Pb ages seem to be 19 

independent of REE + Y concentrations. Our results demonstrate the potential of calcite dating to constrain the 20 

age of ancient ocean floors and provide a test of the hypothesis that a continuous early Paleozoic Kunlun Terrane 21 

extended from northern Tibet into the North Pamir. 22 

Summary. Calcite is frequently formed during alteration processes in the basaltic, uppermost layer of juvenile 23 

oceanic crust. Weathered oceanic basalts are hard to date with conventional radiometric methods. We show in a 24 

case study from the North Pamir, Central Asia, that calcite U-Pb age data—supported by geochemistry and 25 

petrological microscopy—has the potential to date sufficiently old oceanic basalts, if the time span between 26 

basalt extrusion and latest calcite precipitation (~25 Ma) is considered. 27 

1 Introduction 28 

Dating the formation of ocean floor basalts provides significant constraints on the timing of various tectonic 29 

processes, given the voluminous occurrence of ocean floor basalts in ophiolites, sections of ocean plate 30 

stratigraphy and exhumed subduction complexes, and remnants of island-arcs and oceanic plateaus in ancient 31 

convergent margins. However, mafic volcanic rocks, in which zircons are sparse, are challenging to date with 32 

radiometric methods. 40Ar/39Ar dating of separated phenocrysts or groundmass is frequently attempted (e.g., 33 

Waagstein et al., 2002; Heath et al., 2018). However, ocean floor alteration (OFA) often disturbs K-Ar isotopic 34 

compositions by secondary potassium gain (Staudigel et al., 2013) or loss (Pringle, 2013), making 40Ar/39Ar 35 
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dating more successful in providing high precision age data for fresh volcanic rocks but problematic if samples 36 

were affected by OFA. 37 

Calcite veins and calcite-filled amygdules are commonly observed in submarine volcanic rocks. Studies show 38 

that calcite formation occurs during OFA by alkalinity-generating reactions, shortly after the eruption of lavas 39 

(e.g. Coogan and Gillis, 2018; Spivack and Staudigel, 1994; Coogan et al., 2016), driven by the infiltrating 40 

seawater and heat extraction from the oceanic crust. Such processes dominantly occur within ~25 Ma after rock 41 

consolidation (Coogan and Gillis, 2018). Therefore, dating the calcite phases in ocean floor volcanic rocks has 42 

the potential to constrain the timing of rock formation. 43 

Calcite ICP-MS U-Pb dating has been applied to a range of geological problems such as dating of deformation 44 

(e.g., Nuriel et al., 2019), diagenesis, and sedimentation (e.g., Godeau et al., 2018), especially since several 45 

international reference materials were established (Roberts et al., 2017; Rasbury et al., 2021). We present the 46 

first study on calcite LA-ICP-MS U-Pb dating of Paleozoic oceanic crust. Several forms of calcite were dated 47 

from a volcanic sequence in the Carboniferous North Pamir arc (Bazhenov and Burtman, 1982). Calcite U-Pb 48 

ages are consistent with regional geological data and existing radiometric ages. With additional petrographic and 49 

geochemical data, our work sheds light on the potential of calcite U-Pb dating on ancient ocean floor volcanics 50 

and allows us to place better constraints on tectonic models of the Pamir. 51 

2 Geological background and motivation 52 

The North Pamir magmatic arc formed during the subduction of the Paleo-Tethys (e.g., Bazhenov and Burtman, 53 

1982). It has been correlated with the South Kunlun Terrane in the north Tibetan West Kunlun by connecting 54 

ophiolitic sequences along the proposed Oytag–Kudi suture (e.g., Mattern et al., 1996). However, existing age 55 

dating reveals dissimilarities of key rock units in this suture in the West Kunlun compared to the North Pamir. 56 

The West Kunlun Kudi suture closed in the Silurian, as interpreted from zircon and monazite LA-ICP-MS U-Pb 57 

dating of amphibolite-facies rock (Zhang et al., 2018a).  58 

The North Pamir arc consists of poorly dated mafic and intermediate volcanics, associated volcaniclastic rocks, 59 

and subordinate cherts. A series of leucogranites and granodiorites intruded into the arc between 360 and 314 Ma 60 

(Rembe et al., 2021). The green color of the volcanic rocks implies thorough spilitization, making them 61 

unsuitable for 40Ar/39Ar dating. An internal stratigraphy of the volcanic sequence is missing. We propose that 62 

abundant calcite associated with splitic basalts are a product of OFA. Calcite ages can serve as a constraint on 63 

the formation of ocean floor. Specifically, they provide the possibility of directly dating OFA as a proxy for the 64 

emplacement of mafic volcanic rocks. 65 

 We conducted calcite dating based on detailed petrographic and geochemical observations in order to provide 66 

age constraints on the North Pamir arc volcanic rocks and test its correlation with the West Kunlun. For that 67 

purpose, we sampled 4 specimens at 3 different localities in the Chinese Qimgan valley. Samples 17NP436a and 68 

17NP436b are from the same locality and represent redeposited brecciated mafic volcanic rock with interstitial 69 

calcite cement that was formed during an early phase of brecciation (Figure 1a–c). Samples 15NP236 and 70 

15NP233 are from two localities with amygdaloid-basalt, where 15NP236 was taken from a pillow basalt. We 71 

investigated amygdules filled exclusively with calcite (Figure 1e, f) 72 
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3 Methods 73 

3.1 Petrological microscopy and X-ray fluorescence microscopy (XFM) 74 

We carefully analyzed petrographic thin sections of all investigated samples with conventional light microscopy. 75 

We recognized well preserved primary features (see Sect. 4.1), which were then identified on the rock chips 76 

prepared for laser ablation. Detailed sample petrography raise the chances for robust, meaningful ages, as 77 

emphasized recently by Roberts et al. (2021). High resolution reflected light images indicate the position of 78 

ablation spots in Appendix A. 79 

Additionally, we examined sample 17NP436a with scanning X-ray fluorescence microscopy (XFM). A polished 80 

slab parallel to the surface examined with LA-ICP-MS was prepared from the same rock chip. XFM maps were 81 

collected at the XFM beamline at the Australian Synchrotron (Howard et al., 2020). The incident excitation 82 

energy was 18.5 keV. Pixel size and dwell time per pixel are indicated in the figures in Appendix B.  83 

3.2 Laser-ablation inductively-coupled-plasma mass-spectrometry (LA-ICP-MS) 84 

Rock samples were processed at the School of Earth and Environmental Sciences, The University of 85 

Queensland. Samples were cut and mounted to round mounts with one-inch diameters. Samples mounts were 86 

polished with standard polishing procedures and finished with a 0.25 micrometer diamond suspension. 87 

LA-ICP-MS U-Pb dating and geochemical analysis was performed at The University of Queensland following 88 

methods in Su et al. (2020) and Yang et al. (2021). We used WC01 as a secondary reference material and 89 

obtained an age of 251.8 ± 1.4 Ma (2), consistent with the recommended age of 254.4 ± 6.4 Ma (Roberts et al., 90 

2017). 91 

Laser ablation was achieved using an ASI RESOlution 193 ArF nm excimer laser system. Following evacuation 92 

of air, He carrier gas was introduced into the laser cell at a flow rate of 0.35 l/min. 0.005 l/min of N2 gas was 93 

also introduce to the laser cell to enhance the measurement sensitivity. The gas mixture was then introduced into 94 

the plasma torch of a Thermo iCAP RQ quadruple ICP-MS with 1.06 l/min Ar nebulizer gas. No reaction gas 95 

was employed. The laser was run with a 100 µm diameter round spot at 10 Hz, with a measured instrument laser-96 

fluence (laser pulse energy per unit area) of 2.5 J/cm2. For U-Pb dating, each spot had 8 s of background, 20 s of 97 

data acquisition, and 15 s of wash out. For trace elemental analysis, each spot had 6 s of background, 25 s of data 98 

acquisition, and 10 s of wash out. Prior to data acquisition, ICP-MS signals were optimized during tuning. For 99 

our session, ~950 K cps of 238U counts and ~ 0.22 of 206Pb/238U were achieved for measuring NIST612 glass 100 

using line scans of 3 µm/s, 10 Hz, 50 µm round laser pit, and 3 J/cm2. 101 

U-Pb isotopes for geochronology (206Pb, 207Pb, 208Pb, 232Th, and 238U) were measured with the following dwell 102 

times, 206Pb (0.025 s), 207Pb (0.055 s), 208Pb (0.005), 232Th (0.005 s), and 238U (0.02 s). Both glass standard 103 

NIST614 and matrix-matched calcite standards were measured, bracketing unknown spots. NIST614 glass was 104 

used for correction of 207Pb/206Pb fractionation and instrument drift in the 238U/206Pb ratio (Woodhead and Hergt, 105 

2001). Raw data were processed using Iolite software v3.64 (Paton et al., 2011). After the initial correction, a 106 

matrix-matched calcite reference material of known age was used for further correction of matrix-related mass 107 

bias impacting the measured 238U/206Pb ratios, following the approach described elsewhere, as summarized in 108 
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Yang et al. (2021). We used our in-house calcite reference materials (AHX-1D and AHX-1A) and one 109 

international reference material WC-1 (Roberts et al., 2017). 110 

Trace elemental analysis was conducted in the same ablation areas as the U-Pb spots but without overlapping 111 

with U-Pb spots. 43Ca was measured as an internal standard. Data reduction was conducted using the Iolite 112 

software v3.64 (Paton et al., 2011) with the Trace Element data reduction scheme. All reported concentrations 113 

were after international standardization using Ca (Ca = 40.1 %). 114 

4 Results 115 

4.1 Petrography and calcite occurrences  116 

In the Chinese Qimgan valley, basaltic to andesitic volcanic rocks exhibit large amounts of calcite in amygdules, 117 

in between single lava pillows, and volcanic breccia layers (Figure 1 and Appendix A). Two samples, 15NP233 118 

and 15NP236, are amygdaloid-basalts with published geochemistry  (supplementary table S1 , Rembe et al., 119 

2021). Samples 17NP436a and 17NP436b are from a volcanic breccia, rich in calcite cement fragments and 120 

calcite-overgrown, angular volcanic rock fragments.  121 

Amygdules in samples 15NP233 and -236 show one generation of spary or botryoidal calcite with typical 122 

sweeping extinction under cross-polarized light (Figure 2a, b). Sample 15NP233 has vesicles up to 5 mm in 123 

diameter filled exclusively with calcite. Sample 15NP236 has much smaller vesicles, around 1 mm in diameter, 124 

filled with either calcite or zeolite. Both samples show high “Loss on Ignition” (LOI) values for whole rock 125 

geochemistry, accounting for high secondary, volatile rich mineral content (supplementary table S1). No 126 

fractures or veins cut across amygdules in these samples. 127 

In samples 17NP436a and b, fracture pore space between basaltic rock fragments shows multiple calcite 128 

generations (Figure 2c, d). Calcite formed prior to deposition of the breccia. Specifically, isolated cement 129 

fragments are fully embedded in a fine-grained matrix (e.g., in sample 17NP436b). They may have formed in 130 

fractures of a volcanic edifice and were redeposited after its collapse. Some volcanic rock fragments show an 131 

early, hydrothermal clay layer (Figure 2c and phase 1 in Figure 2d). The fragments—or if present, the clay 132 

coating—is overgrown by a first generation of radial-fibrous calcite. Larger voids are filled with late, equant 133 

calcite. The presence of radial-fibrous and sparry, equant calcite crystals is typical of continuous calcite 134 

precipitation in a porous substratum (Gonzalez and Carpente, 1992). In a first phase, radial-fibrous calcite grows 135 

along the wall of the voids and successively reduces the porosity of the substratum, thereby hindering fluid flow. 136 

This reduces the calcite precipitation rate and the amount of nucleation, leading to larger, equant calcite crystals 137 

in the center of the voids. This model can be adopted for a first calcite phase (2 and 3 in Figure 2d). As the 138 

radial-fibrous and the equant calcite growth reflects one process, both calcite phases were chosen for ablation. 139 

Calcite filled fissures (4 in Figure 2d), associated with styloliths, were avoided. These are interpreted to reflect a 140 

later tectonic event, expressed by differential stress, pressure solution and reprecipitation of calcite in open 141 

joints. In order to better understand calcite phases, we further study 17NP436a with high-resolution synchrotron 142 

X-ray fluorescence mapping (Howard et al., 2020), following methods described in Vanghi et al. (2019). Sr 143 

maps show elevated content for the phase 2 and 3 calcite and much lower in fissure filling calcite phase 4, 144 

suggesting different geochemical regimes (Appendix B). 145 
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4.2 Calcite U-Pb geochronology and geochemistry 146 

We obtained 839 single-spot analyses from 18 laser ablation areas (Appendix A), 3–6 ablation areas per sample 147 

(Figure 3 and Appendix C, data table in supplement table S2). Ages are calculated for individual ablation areas 148 

by linear regression in a Tera–Wasserburg plot. They overlap within the reported 2σ-error for each sample. 149 

Single-sample ages use analyses from all ablation areas (Figure 4). Volcanic breccia samples 17NP436a (Figure 150 

4a) and 17NP436b (Figure 4b) have ages of 323.1 ± 2.0 Ma and 327.1 ± 2.8 Ma (2σ), respectively. Vesicle 151 

calcite samples 15NP233 (Figure 4c) and 15NP236 (Figure 4d) yielded ages of 330.5 ± 3.2 Ma and 353.2 ± 9.7 152 

Ma (2σ), respectively. 153 

For each laser ablation area, we also measured REE + Y geochemical data (a total of 380 single spot analyses) 154 

using LA-ICP-MS (data table in supplement table S3). Calcite REE patterns normalized to chondrite (Boynton, 155 

1984) are mostly flat to slightly “U” shaped (Appendix D). REE content of the vesicle-hosted calcite is higher 156 

(61 ppm mean total REE content in sample 15NP233, 59 ppm in sample 15NP236) compared to the breccia 157 

calcite cement (8 ppm in 17NP436a and 12 ppm in 17NP436b). LREE are enriched over MREE (Lan/Smn) and 158 

negatively correlate with enriched MREE over HREE values (Dyn/Ybn) in all samples. The vesicle filling calcite 159 

shows both positive and negative Ce/Ce* values between 0.75 and 1.41, the breccia calcite cement shows 160 

negative values between 0.18 and 0.92. Negative Ce anomalies are usually associated with oxidizing conditions 161 

producing Ce4+ instead of Ce3+ (e.g., Alibo and Nozaki, 1999). We observe positive to slightly negative Gd 162 

anomalies (Gd/Gd* = Gdn/sqrt(Eun×Tbn); Figure 4e). Positive Yn/Hon anomalies are common (Figure 4f). 163 

Negative Ce/Ce* and Eu/Eu* anomalies together with higher Gd/Gd* and Yn/Hon in the calcite cement of the 164 

volcanic breccia are interpreted to reflect a stronger influence of infiltrating seawater (Ce/Ce* = 165 

Cen/sqrt(Lan×Prn); Eu/Eu* = Eun/sqrt(Smn×Tbn)). 166 

5 Discussion 167 

5.1 Age data 168 

Single-area ages overlap mostly within 2σ-errors per sample (Figure 3). Therefore, we interpret the calculated 169 

bulk sample age as a good approximation of the true age of calcite precipitation (Figure 4). No correlation 170 

between REE + Y content and U-Pb ages was found.  171 

Calcite formation marks the phase of alkalinity-generating reactions in newly formed submarine volcanic rocks. 172 

Alkalinity describes the acid neutralizing capacity by formation of alkali and alkaline earth metal ion species 173 

during rock weathering (e.g., Spivack and Staudigel, 1994). This is crucial for interpreting calcite U-Pb ages. 174 

Possible high temperature hydrothermal alteration is restricted to discrete zones, such as veins, shear zones, and 175 

hydrothermal upflow zones (Harlov and Austrheim, 2013; Honnorez, 2003). It changes the mineral composition 176 

completely, such that primary igneous textures are obliterated (e.g. epidosites, Honnorez, 2003). Such rock types 177 

must be avoided as they are unlikely to reproduce related to OFA. By dating isolated calcite, far from 178 

hydrothermal upflow zones, we determine the age range of OFA occurring shortly after rock consolidation. This 179 

gives a first order minimum age estimate for ocean floor formation, if not the actual age of formation. 180 
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We note that, despite inter-sample variations, calcite ages are consistent with published radiometric ages in the 181 

North Pamir arc, including two hornblende 40Ar/39Ar ages of ~350 Ma from a meta-andesite, zircon U-Pb ages of 182 

~329 Ma from felsic to intermediate volcanics in Altyn Darya valley (Schwab et al., 2004), and zircon U-Pb 183 

ages of ~360 to 314 Ma from island arc granites (Ji et al., 2018; Rembe et al., 2021) (Figure 5).  184 

5.2 Calcite REE + Y geochemistry 185 

The hosting basalt has a flat C1-normalized REE pattern (Boynton, 1984), implying an intra-oceanic arc origin 186 

(Jiang et al., 2008; Rembe et al., 2021). We suggest a possible control of the basalt geochemistry on calcite REE 187 

patterns; any process altering this signal would significantly change the calcite REE pattern (Debruyne et al., 188 

2016). 189 

REE partition coefficients between aqueous solution and precipitating calcite have been studied experimentally 190 

(e.g., Perry and Gysi, 2018; Voigt et al., 2017). Evidently, variable physicochemical conditions lead to strongly 191 

differing integration of rare earth elements into the calcite lattice. We show that calcite cements of samples 192 

17NP436a and b are distinguishable from vesicle fillings in samples 15NP233 and -236 (Figure 4e, f).  193 

Calcite must be the major REE + Y sink as our samples do not show any intergrowing, co-precipitated mineral 194 

phase. The dominance of calcite hints at precipitation from CO2-rich seawater derived hydrothermal fluids under 195 

low temperature conditions (Talbi and Honnorez, 2003; Honnorez, 2003). This happened in the upper few 100 196 

meters of the oceanic crust. We assume a low mineralization temperature. Under this condition, Eu is trivalent 197 

and negative Eu/Eu* is directly inherited from the fluid reservoir (Debruyne et al., 2016). Pronounced negative 198 

Ce/Ce* values are a typical inherited signal of oxidizing seawater (e.g., Alibo and Nozaki, 1999); in correlation 199 

with increasing Yn/Hon values, they trace back to oxidative sorption by Fe-Mn O(OH) species (Debruyne et al., 200 

2016). Positive Gd/Gd* values may be interpreted as a seawater signal (e.g., Baar et al., 1985). However, 201 

markedly positive Gd anomalies together with positive Yn/Hon values are less commonly reported. Similar 202 

features were observed for high salinity waters of the Jordan graben lakes (e.g., Möller et al., 2007). Because 203 

ocean floor aquifer porosities are highly heterogenous (e.g., Fisher and Becker, 2000), the higher porosity of 204 

volcanic breccias 17NP436a/b may have promoted seawater infiltration, leading to lower REE concentrations 205 

and more pronounced Ce/Ce*, Eu/Eu*, Gd/Gd* and Yn/Hon anomalies compared to amygdaloidal basalt 206 

samples.  207 

5.3 Implications on tectonic models of the Pamir 208 

The results from petrological thin section examination, showing primary calcite fabrics, together with LA-ICP-209 

MS trace element geochemistry, which reflect sea water infiltration, typical for OFA, are major arguments for 210 

preserved, primary U-Pb isotopic ratios. Our studies constrain the arc volcanic rocks in the NE Pamir to 211 

Carboniferous (Figure 5), significantly younger than correlative lithologies in the West Kunlun, which are dated 212 

to the Cambrian (e.g. Yixieke dacite, Xiao et al. (2005), Kudi ophiolite, Wang et al. (2021)). The results carry 213 

significant implications for the interpretation of Mesozoic and Cenozoic geodynamic evolution of the Tibet-214 

Pamir orogen. Since the pioneering works of Burtman et al. (1963), Burtman and Molnar (1993), Pan (1994), 215 

Mattern et al. (1996), Xiao et al. (2002) and references therein, the Kudi-Oytag suture, or the “Paleozoic suture”, 216 
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has been hypothesized to be a single, once continuous, E-W-striking feature that was bent towards the north by 217 

Cenozoic indentation of the Pamir into a postulated Tarim-Tajik block. 218 

Recent publications outline an early Paleozoic history of the West Kunlun arc magmatism (Figure 6a). The 219 

southward subduction of the Proto-Tethys started in the Terreneuvian, dated by the 531 Ma Nanpingxueshan 220 

pluton in the Tianshuihai Group (Yin et al., 2020). As a consequence of the development of the Yixieke volcanic 221 

arc (Xiao et al., 2005) and the Yierba arc, the South Kunlun was intruded by the Yierba adakitic diorite at ca. 222 

513 Ma (Yin et al., 2020). In response to slab roll-back, the Kudi ophiolite formed in a back-arc position 223 

between 513-516 Ma (Wang et al., 2021). The Proto-Tethys closed in the Silurian between 431-420 Ma (Wang 224 

et al., 2020) with exhumation of metamorphic units starting from ca. 440 Ma, as dated by monazite U-Pb from 225 

the Saitula Group (Zhang et al., 2018a). Closure of the Proto-Tethys was followed by the intrusion of A-type 226 

post-orogenic granites, dated as 420-405 Ma by zircon U-Pb in the North Kudi granite (Yuan et al., 2002; Liu et 227 

al., 2014).  228 

However, corresponding, early Paleozoic geologic events or rock records in the North Pamir have not been 229 

reported. Instead, previous works on mafic to intermediate volcanic rocks and granitoids of the North Pamir 230 

show major, subduction related, arc magmatic activity in the mid to late Carboniferous (Rembe et al., 2021; 231 

Jiang et al., 2008; Ji et al., 2018; Kang et al., 2015). Carboniferous arc magmatic rocks found in the Waqia (Tang 232 

et al., 2020) and East Mazar (Li et al., 2006) tectonic slivers, reflect the closure of a remnant ocean basin, 233 

whereas major arc magmatic activity was focused on the North Pamir arc further to the west (Figure 6b). 234 

Stratigraphic relations and hiati point to a soft collision and obduction of that North Pamir arc in the early 235 

Permian (Rembe et al., 2021). No broad Paleozoic magmatic activity younger than Lower Devonian is known in 236 

the West Kunlun. The Carboniferous North Pamir arc granitoids intrude largely into poorly dated mafic volcanic 237 

rocks. Our calcite U-Pb ages agree with the only known ages of this volcanic unit from Schwab et al. (2004) 238 

(Figure 5). They corroborate the dissimilarity of the West Kunlun and North Pamir arc volcanic rocks, and 239 

therefore argue against the existence of a continuous Paleozoic suture extending from the Pamir to the West 240 

Kunlun.  241 

6 Conclusion 242 

Calcite hosted by Paleozoic ocean floor volcanic rocks was dated by LA-ICP-MS, yielding consistent 243 

Carboniferous ages. These ages agree with existing radiometric ages of volcanic units in the North Pamir, 244 

implying the presence of Mississippian oceanic crust in the North Pamir. This finding argues against models 245 

invoking a continuous, early Paleozoic Kunlun belt, stretching from the West Kunlun far into the North Pamir. 246 

REE + Y geochemistry of our samples indicates a mixture of at least two geochemical reservoirs—the basaltic 247 

rock being leached by interaction with seawater and the seawater itself. We interpret REE + Y variations among 248 

samples in the same unit as effects of variable porosities. Low trace element concentration and anomalies 249 

typically associated with oxidizing seawater occur when porosity is high, arguing for a high water-rock ratio. In 250 

this study, REE + Y variability did not influence U-Pb age data. 251 

Our work demonstrates the importance of textural and geochemical data in interpreting calcite U-Pb ages. We 252 

show, that calcite U-Pb dating has great potential in constraining the age of oceanic crust, which is usually 253 

difficult to date radiometrically.  254 
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7 Appendices 255 

Appendix A: Reflected light images, Fig.A1–A4 256 

Appendix B: X-ray fluorescence microscopy (XFM) maps, Fig. B1–6 257 

Appendix C: Tera–Wasserburg plot of each ablation area, Fig.C1a–d 258 

Appendix D: REE data of each ablation area, Fig.D1 259 

8 Code and data availability 260 

Whole rock geochemistry data used from literature ( Rembe et al. (2021), S1) as well as LA-ICP-MS isotope 261 

data (S2) and geochemistry (S3) will be uploaded to UQ eSpace (https://espace.library.uq.edu.au/), run by the 262 

University of Queensland, upon acceptance. 263 
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 281 

Figure 1: Sample photographs of hand specimen of sample 17NP436a (a) and polished rock block used for LA-ICP-MS 282 

measurements of sample 17NP436a (b) and 17NP436b (c). Field photograph of amygdaloidal pillow-basalts in Qimgan 283 

valley (d), with white arrows pointing at calcite filled vesicles (arrow a) and massive interstitial calcite (arrow b). Polished 284 

rock specimen 15NP236 (e) and 15NP233 (f) of similar rocks, were used for LA-ICP-MS. 285 

  286 
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 287 

Figure 2: Typical calcite filled vesicles of sample 15NP236 (a), in this case with spary calcite and zeolite mineralization. The 288 

white arrow marks preserved perlitic structures. Botryoidal calcite was found in both amygdaloid-basalt samples, the 289 

example in (b) is from 15NP233. Fig. 1c shows a thin section photograph of sample 17NP436a. White arrows indicate radial 290 

fibrous calcite (a), dark styloliths (b), calcite filled fissures (c). Fig. 1a, b, c under crossed polarized light. Fig. 1d shows a 291 

schematic sketch of microphotograph Fig. 1c, delineating a sequence of 4 events: (1) formation of hydrothermal clay, (2) 292 

precipitation of fibrous-radial calcite along the walls of brecciated volcanic rock fragments, (3) late-stage equant calcite 293 

formation, (4) pressure solution and formation of styloliths (dark lines) and reprecipitation of dissolved calcite in fissures 294 

(green). Areas 2 and 3 are targets for laser ablation. 295 
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 297 

Figure 3: Intra sample age dispersion, age error bars are in ascending order. All errors are 2σ. Single ablation areas are 298 

color-coded and marked with capital letters. Exact locations on samples are shown in Appendix A. 299 
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 301 

Figure 4: Plots of all Isotope ratios obtained from single ablation areas. Cemented volcanic breccia in samples 17NP436a 302 

and b (a, b) gave similar ages. Sample 15NP233 (c) has a higher dispersion. Sample 15NP236 (d) shows a good linear trend 303 

and a good fit. (e) Mixing trend between high total REE—negative Gd/Gd* and low total REE—positive Gd/Gd* 304 

composition. (f) Higher Yn/Hon values correlate with low total REE. Y and Ho normalized against chondrite values of Anders 305 

and Grevesse (1989). (e, f) + -15NP233, -236, o -17NP436A, -B; color-code see Fig. 2. 306 
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 308 

Figure 5: (a) Map of the northeastern Pamir with location of radiometric ages for the North Pamir arc volcanic rocks, 309 

shown in c. (b) Detailed field locations of samples in the Qimgan valley (map after Henan Institute of Geological Survey 310 

(2014)). There is a sedimentary hiatus between the Middle Pennsylvanian and the Guadalupian (Rembe et al., 2021). (c) 311 

Overview of selected literature data and newly obtained data for OFA of the North Pamir Carboniferous arc. 312 
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 314 

Figure 6: (a) Paleogeographic situation in the mid-Cambrian: The roll-back of the Proto-Tethys slab caused the formation of 315 

the Kudi ophiolite, exposed in the Buziwan valley (Wang et al., 2021). (b) Paleogeographic situation in the upper 316 

Mississippian: The North Pamir arc formed along an intra-oceanic subduction zone (Jiang et al., 2008) forming the Oytag 317 

segment in its eastern branch. Subduction related Waqia granite (Tang et al., 2020) and East Mazar granite (Li et al., 2006), 318 

both present as tectonic slivers, suggest the presence of a remnant oceanic basin between Tianshuihai and South Kunlun 319 

Terrane accretionary complex, as suggested by Zhang et al. (2018b). Small photographs show pillow basalts in the Kudi 320 

section (in a) and Oytag near Qimgan (in b). SKT-South Kunlun Terrane, TSHT-Tianshuihai Terrane, NPA-North Pamir 321 

volcanic arc, NKT-North Kunlun Terrane. 322 
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Figure A1. Reflected light image of sample 17NP436a with marked ablation areas. Letter, attached to the yellow 

boxes, appended to the sample name, labels the ablation areas. Colors of label boxes are consistent with colors of 

in-text figures. 
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Figure A2. Reflected light image of sample 17NP436b with marked ablation areas. Letter, attached to the yellow 

boxes, appended to the sample name, labels the ablation areas. Colors of label boxes are consistent with colors of 

in-text figures. 

https://doi.org/10.5194/gchron-2021-27
Preprint. Discussion started: 20 September 2021
c© Author(s) 2021. CC BY 4.0 License.



 

21 

 

Figure A3. Reflected light image of sample 15NP233 with marked ablation areas. Letter, attached to the yellow 

boxes, appended to the sample name, labels the ablation areas. Colors of label boxes are consistent with colors of 

in-text figures. 
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Figure A4. Reflected light image of sample 15NP236 with marked ablation areas. Letter, attached to the yellow 

boxes, appended to the sample name, labels the ablation areas. Colors of label boxes are consistent with colors of 

in-text figures. 
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Figure B1. Reflected light image and cross-polarized light image of the investigation area on sample 17NP436a. 
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Figure B2. Coarse scan of the investigation areas on sample 17NP436a for Ca and Sr. 

Area A shows a rock fragment fringed by radial-fibrous calcite cement. The right fissure shows calcite growing 

from both walls toward the center, showing lower Sr values in the center of the vein. 

Area B shows an isolated fragment of radial-fibrous to equant cement with Sr and Ca zoning. High Sr/ low Ca 

values occur in the radial-fibrous calcite along the lower-right boundary with an abrupt change to low Sr/ high 

Ca values in the center that grade into high Sr/ low Ca values in a broad zone along the upper-left boundary. The 

low Sr/ high Ca values occur at the transition from radial-fibrous to equant calcite crystals. A younger calcite 

filled fissure crosscuts the calcite cement fragment. Crucial are the much lower Sr values. This fissure formed 

during tectonic straining of the rock, pressure solution and reprecipitation of calcite. 

Area C shows calcite crystals with highest Sr/ lowest Ca values in the center of the single crystals. 
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Figure B3. Fine scan of the investigation areas on sample 17NP436a for Sr. 
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Figure B4. Fine scan of the investigation areas on sample 17NP436a for Ca.  
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Figure C1. Tera-Wasserburg plots of age data for individual ablation areas: 17NP436a (A), 17NP436b (B), 

15NP236 (C), 15NP233 (D). 
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Figure D1. Rare earth element plots of each individual ablation area. 15NP233 and 15NP236 whole rock data 

from Rembe et al. (2021). 
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